COMP10001

Week 5



Methods, iteration and loops



What is a method? How are methods different/similar to functions?



What is a method? How are methods different/similar to functions?

- Like functions, methods run some pre-defined code to achieve a task
- Both are called with brackets, containing arguments
- Methods are “attached” to an object with a full stop:

- function name (arguments, ..) VS object.method name (arguments, ..)
- So methods can do fun things like edit the object they're called on in-place!



Let’'s do an exercise!

Let s="Computing is FUN!".What happens when we apply the methods below?

sS.isupper () s.count (“n”)

s.upper () s.strip (M!7)

S.el’ldSWith(“fun!H) S.replace(“i”, = [ @



Let’'s do an exercise!

Let s="Computing is FUN!". What happens when we apply the methods below?

s.1lsupper () s.count (“*n”)
False 2
s.upper () s.strip (M!7)
“COMPUTING IS FUN!” “Computing is FUN”
S.el’ldSWith(“fun!H) S.replace(“i”, ® [ a7

True “Comput!ng !s FUN!”
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What is the difference between a list and a tuple?

- Lists are mutable

- Tuples are not!

- We can make changes to mutable items “in-place”
E.g. Ist +=[3]

- Lists initialised with square brackets
E.g.Ist=1[1,2,3]

- Tuples initialised with rounds brackets

E.g.tup=(1,)
Or the tuple() function!



How do we add and remove items from a list?



How do we add and remove items from a list?

.append(item),
insert(index, item),
.extend(lst)

.pop(index)
del
.-remove(item)
.Clear()



Let’'s do an exercise!

Let 1st=[2, ("green", “eggs”, “ham”), False].What happens when we
use the expressions below?

1st[2] lst.append (5); print(lst)

1st[1][-2] lst.pop(2); print(lst)

1st[1][-2][:3] lst.reverse(); print(lst)



Let’'s do an exercise!

Let 1st=[2, ("green", “eggs”, “ham”), False].What happens when we
use the expressions below?

1st[2] lst.append (5); print(lst)
False [2, ("green", “eggs”, “ham”), False, 5]

1st[1][-2] lst.pop(2); print (lst)
“eggs” False

[2, ("green", “eggs”, “ham”)]
1st[1][-2][:3] lst.reverse(); print(lst)

True [False, ("green", “eggs”, “ham”), 2]



What is “iteration” in programming? Why do we need it?



What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
- often with a small change each time



What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
often with a small change each time
-  We need to do this all the time in programming!
Writing the same instructions over and over again is inefficient! Unreadable!

Error-prone!



What are the two types of loop in Python”? How do we structure them?



What are the two types of loop in Python”? How do we structure them?
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For <loop variable> in <sequence>:

Do something with the loop variable



What are the two types of loop in Python”? How do we structure them?

- For loops
For <loop variable> in <sequence>:

Do something with the loop variable

- While loops
While <condition>:

Do something



How are the two types of loops different?
When should we use one over the other?
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How are the two types of loops different?
When should we use one over the other?

- For loop iterates over a sequence:
- finite/controlled number of iterations

- While loop iterates until truth of condition changes:
- infinite/uncontrolled number of iterations

- For loops are great when we know in advance how many times we need our
loop to run
- While loops are great when we don’t know!



Can we always convert a for into a while and vice versa?
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Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:
a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration

c. When the loop should terminate

lSt — [\\a/I,/Ib/I,/IC/I]
for letter in lst:
print (letter + “!7)



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i=1
J =1
while 1 < 5:
print(i, J, 1 + 3J)
hold = 1
i=1+ 7
J = hold



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j
J =1
while i < 5:

print(i, J, 1 + 3J)

hold = 1

i=1+ 7

J = hold

i+ ]



Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j i+ ]
3 =1
while 1 < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = 1
i=1i+ 7

§ = hold



Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j i+ ]

3 =1

while 1 < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = i 2 1 3
i=1i+ 7

§ = hold



Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:
a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i=1 i j i+
J =1
while i < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = i 2 1 3
i=1i+ 3
4 = hold 3 2 S




Exercises!



What is the output of the following snippets?

i= 2
while 1 < 8:

print (£"The square of {i} s (i _* 1}"%)

i=1i4+ 2
i=20
colours = ("pink", "red", "blue", "gold",
while i < len(colours):
if colours[i] == "red":
print ("Found_red _at_index", 1i)

i4+=1

MIN_WORD_LEN =
long_words = 0
text = "There_once_lived _a _princess"
for word in text.split():
if len(word) >= MIN_WORD_LEN:
print(word, %is_too . long!™)
long_words += 1
print (long_words,

5

"words _were_too _long")

"red")

for ingredient in' ("corn', "pear%, %chililiY, "EishY):
if ingredient.startswith('c'):
print (ingredient, "is delicious!")

else:

print (ingredient, "is_not!")



Rewrite the snippets with an alternative loop command!

MIN_WORD_LEN = 5

S long_words = 0

;h;le i < 8 text = "There_once_lived _a _princess"
print (£"The_square_of {i}_is_{i_*»_1i}") Eax vord 1ONEexRE.SpLit U
S = D 9 if len(word) >= MIN_WORD_LEN:

print(word, %is_too . long!™)
long_words += 1
print (long_words, "words _were _too _long")

i=20
colours = ("pink", "red", "blue", "gold", "red")
while i < len(colours):

if colours[i] == "red":

print ("Found_red_at_index", i) for ingredient in' ("corn', "pear%, %chililiY, "EishY):
A= if ingredient.startswith('c’):
print (ingredient, "is delicious!")
else:

print (ingredient, "is_not!")



What's wrong with this code? How should we fix it?

def largest_num(nums) :
maxnum = nums [0]
for num in nums:
if num > maxnum:
maxnum = num
return maxnum

print (largest num([1l, 2, 3]))



Let’s jump in breakout rooms for Ex. 3



Ex. 3 solutions

for 1 in range(5):
print(i1x%2)



Ex. 3 solutions

for 1 in range(5):
print(i1x%2)

N O N = O



Ex. 3 solutions

for ingredient in ("carrot", "lettuce", "cucumber", "tomato"):
if ingredient.startswith('c'):
print (ingredient, "is delicious")
else:
print (ingredient, "is tasty")



Ex. 3 solutions

for ingredient in ("carrot", "lettuce", "cucumber", "tomato"):
if ingredient.startswith('c'):
print (ingredient, "is delicious")
else:
print (ingredient, "is tasty")

carrot 1is delicious
lettuce 1is tasty
cucumber 1is delicious
tomato is tasty



Ex. 3 solutions

i=20
colours = ("olive", "red"™, "violer", "turquoise®, "red", "red", "amber")
while i < len(colours):

if colours[i] == "red":

print ("Found red at index", 1i)
i+=1



Ex. 3 solutions

i=20
colours = ("olive", "red"™, "violer", "turquoise®, "red", "red", "amber")
while i < len(colours):
if colours[i] == "red":
print ("Found red at index", 1)
i+=1

Found red at index 1
Found red at index 4
Found red at index 5



Ex. 3 solutions

MIN_WORD_ LEN = 4
long_words = 0
text = "Once upon a time in a land far away lived a princess"
for word 1n text.split{):
if len(word) > MIN_WORD_LEN:

print (word, "is too long!")

long_words += 1
print (long_words, "words were too long")



Ex. 3 solutions

MIN_WORD_ LEN = 4
long_words = 0
text = "Once upon a time in a land far away lived a princess"
for word in text.split() :
if len(word) > MIN WORD_ LEN:

print (word, "is too long!")

long_words += 1
print (long_words, "words were too long")

lived is too long!
princess is too long!
2 words were too long



print ("We
print ("We
print ("We
print ("We

need
need
need
need

some
some
some
some

def get_str (part):
return f"We need some {part}"

Last exercise for today!

Do the following snippets do the same thing?
What are their advantages/disadvantages?

saws")
hammers")
cogs")
nails")

print (get_str ("saws"))
print (get_str ("hammers"))
pELNE (get str (Ycogs™))
print (get_str ("nails"))

def get_str (part):
return f"We need some {part}"

parts = ("saws", "hammers", "cogs",

for part in parts:
print (get_str (part))

Yhatitlis™)



Coding problems

Write a function which takes an integer input n and prints the thirteen times tables
from 1 * 13 untiln * 13.

Write a function which takes a tuple of strings and returns a list containing only the
strings which contain at least one exclamation mark or asterisk symbol.



Coding problems

Write a function which takes an integer input n and prints the thirteen times tables
from 1 * 13 untiln * 13.

Write a function which takes a tuple of strings and returns a list containing only the
strings which contain at least one exclamation mark or asterisk symbol.

def thirteen_table (num) : def fun_filter (words) :
for i in range (1, num+l): out =[]
print (f"{i} * 13 = {i * 13}") for word in words:
gt iU an word or '#'" in word:

out.append (word)
return out



