COMP10001

Week 5

Methods, iteration and loops

What is a method? How are methods different/similar to functions?

What is a method? How are methods different/similar to functions?

- Like functions, methods run some pre-defined code to achieve a task
- Both are called with brackets, containing arguments
- Methods are “attached” to an object with a full stop:

- function name (arguments, ..) VS object.method name (arguments, ..)
- So methods can do fun things like edit the object they're called on in-place!

Let’'s do an exercise!

Let s="Computing is FUN!".What happens when we apply the methods below?

sS.isupper () s.count (“n”)

s.upper () s.strip (M!7)

S.el’ldSWith(“fun!H) S.replace(“i”, = [@

Let’'s do an exercise!

Let s="Computing is FUN!". What happens when we apply the methods below?

s.1lsupper () s.count (“*n”)
False 2
s.upper () s.strip (M!7)
“COMPUTING IS FUN!” “Computing is FUN”
S.el’ldSWith(“fun!H) S.replace(“i”, ® [a7

True “Comput!ng !s FUN!”

What is the difference between a list and a tuple?

What is the difference between a list and a tuple?

- Lists are mutable
- Tuples are not!

What is the difference between a list and a tuple?

- Lists are mutable
- Tuples are not!

- We can make changes to mutable items “in-place”
E.g. Ist +=[3]

What is the difference between a list and a tuple?

- Lists are mutable

- Tuples are not!

- We can make changes to mutable items “in-place”
E.g. Ist +=[3]

- Lists initialised with square brackets
E.g.Ist=1[1,2,3]

- Tuples initialised with rounds brackets

E.g.tup=(1,)
Or the tuple() function!

How do we add and remove items from a list?

How do we add and remove items from a list?

.append(item),
insert(index, item),
.extend(lst)

.pop(index)
del
.-remove(item)
.Clear()

Let’'s do an exercise!

Let 1st=[2, ("green", “eggs”, “ham”), False].What happens when we
use the expressions below?

1st[2] lst.append (5); print(lst)

1st[1][-2] lst.pop(2); print(lst)

1st[1][-2][:3] lst.reverse(); print(lst)

Let’'s do an exercise!

Let 1st=[2, ("green", “eggs”, “ham”), False].What happens when we
use the expressions below?

1st[2] lst.append (5); print(lst)
False [2, ("green", “eggs”, “ham”), False, 5]

1st[1][-2] lst.pop(2); print (lst)
“eggs” False

[2, ("green", “eggs”, “ham”)]
1st[1][-2][:3] lst.reverse(); print(lst)

True [False, ("green", “eggs”, “ham”), 2]

What is “iteration” in programming? Why do we need it?

What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
- often with a small change each time

What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
often with a small change each time
- We need to do this all the time in programming!
Writing the same instructions over and over again is inefficient! Unreadable!

Error-prone!

What are the two types of loop in Python”? How do we structure them?

What are the two types of loop in Python”? How do we structure them?

- For loops
For <loop variable> in <sequence>:

Do something with the loop variable

What are the two types of loop in Python”? How do we structure them?

- For loops
For <loop variable> in <sequence>:

Do something with the loop variable

- While loops
While <condition>:

Do something

How are the two types of loops different?
When should we use one over the other?

How are the two types of loops different?
When should we use one over the other?

- For loop iterates over a sequence:
- finite/controlled number of iterations

How are the two types of loops different?
When should we use one over the other?

- For loop iterates over a sequence:
- finite/controlled number of iterations

- While loop iterates until truth of condition changes:
- infinite/uncontrolled number of iterations

How are the two types of loops different?
When should we use one over the other?

- For loop iterates over a sequence:
- finite/controlled number of iterations

- While loop iterates until truth of condition changes:
- infinite/uncontrolled number of iterations

- For loops are great when we know in advance how many times we need our
loop to run
- While loops are great when we don’t know!

Can we always convert a for into a while and vice versa?

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:
a. What the loop variable is initialised to

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:
a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration

c. When the loop should terminate

lSt — [\\a/I,/Ib/I,/IC/I]
for letter in lst:
print (letter + “!7)

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i=1
J =1
while 1 < 5:
print(i, J, 1 + 3J)
hold = 1
i=1+ 7
J = hold

Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!

- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j
J =1
while i < 5:

print(i, J, 1 + 3J)

hold = 1

i=1+ 7

J = hold

i+]

Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j i+]
3 =1
while 1 < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = 1
i=1i+ 7

§ = hold

Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i =1 i j i+]

3 =1

while 1 < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = i 2 1 3
i=1i+ 7

§ = hold

Can we always convert a for into a while and vice versa?

For can always be converted into a while
Converting a while into a for is not always possible!

To convert a loop, identify:
a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

i=1 i j i+
J =1
while i < 5: 1 1 2
print (i, 3j, 1 + 7J)
hold = i 2 1 3
i=1i+ 3
4 = hold 3 2 S

Exercises!

What is the output of the following snippets?

i= 2
while 1 < 8:

print (£"The square of {i} s (i _* 1}"%)

i=1i4+ 2
i=20
colours = ("pink", "red", "blue", "gold",
while i < len(colours):
if colours[i] == "red":
print ("Found_red _at_index", 1i)

i4+=1

MIN_WORD_LEN =
long_words = 0
text = "There_once_lived _a _princess"
for word in text.split():
if len(word) >= MIN_WORD_LEN:
print(word, %is_too . long!™)
long_words += 1
print (long_words,

5

"words _were_too _long")

"red")

for ingredient in' ("corn', "pear%, %chililiY, "EishY):
if ingredient.startswith('c'):
print (ingredient, "is delicious!")

else:

print (ingredient, "is_not!")

Rewrite the snippets with an alternative loop command!

MIN_WORD_LEN = 5

S long_words = 0

;h;le i < 8 text = "There_once_lived _a _princess"
print (£"The_square_of {i}_is_{i_*»_1i}") Eax vord 1ONEexRE.SpLit U
S = D 9 if len(word) >= MIN_WORD_LEN:

print(word, %is_too . long!™)
long_words += 1
print (long_words, "words _were _too _long")

i=20
colours = ("pink", "red", "blue", "gold", "red")
while i < len(colours):

if colours[i] == "red":

print ("Found_red_at_index", i) for ingredient in' ("corn', "pear%, %chililiY, "EishY):
A= if ingredient.startswith('c’):
print (ingredient, "is delicious!")
else:

print (ingredient, "is_not!")

What's wrong with this code? How should we fix it?

def largest_num(nums) :
maxnum = nums [0]
for num in nums:
if num > maxnum:
maxnum = num
return maxnum

print (largest num([1l, 2, 3]))

Let’s jump in breakout rooms for Ex. 3

Ex. 3 solutions

for 1 in range(5):
print(i1x%2)

Ex. 3 solutions

for 1 in range(5):
print(i1x%2)

N O N = O

Ex. 3 solutions

for ingredient in ("carrot", "lettuce", "cucumber", "tomato"):
if ingredient.startswith('c'):
print (ingredient, "is delicious")
else:
print (ingredient, "is tasty")

Ex. 3 solutions

for ingredient in ("carrot", "lettuce", "cucumber", "tomato"):
if ingredient.startswith('c'):
print (ingredient, "is delicious")
else:
print (ingredient, "is tasty")

carrot 1is delicious
lettuce 1is tasty
cucumber 1is delicious
tomato is tasty

Ex. 3 solutions

i=20
colours = ("olive", "red"™, "violer", "turquoise®, "red", "red", "amber")
while i < len(colours):

if colours[i] == "red":

print ("Found red at index", 1i)
i+=1

Ex. 3 solutions

i=20
colours = ("olive", "red"™, "violer", "turquoise®, "red", "red", "amber")
while i < len(colours):
if colours[i] == "red":
print ("Found red at index", 1)
i+=1

Found red at index 1
Found red at index 4
Found red at index 5

Ex. 3 solutions

MIN_WORD_ LEN = 4
long_words = 0
text = "Once upon a time in a land far away lived a princess"
for word 1n text.split{):
if len(word) > MIN_WORD_LEN:

print (word, "is too long!")

long_words += 1
print (long_words, "words were too long")

Ex. 3 solutions

MIN_WORD_ LEN = 4
long_words = 0
text = "Once upon a time in a land far away lived a princess"
for word in text.split() :
if len(word) > MIN WORD_ LEN:

print (word, "is too long!")

long_words += 1
print (long_words, "words were too long")

lived is too long!
princess is too long!
2 words were too long

print ("We
print ("We
print ("We
print ("We

need
need
need
need

some
some
some
some

def get_str (part):
return f"We need some {part}"

Last exercise for today!

Do the following snippets do the same thing?
What are their advantages/disadvantages?

saws")
hammers")
cogs")
nails")

print (get_str ("saws"))
print (get_str ("hammers"))
pELNE (get str (Ycogs™))
print (get_str ("nails"))

def get_str (part):
return f"We need some {part}"

parts = ("saws", "hammers", "cogs",

for part in parts:
print (get_str (part))

Yhatitlis™)

Coding problems

Write a function which takes an integer input n and prints the thirteen times tables
from 1 * 13 untiln * 13.

Write a function which takes a tuple of strings and returns a list containing only the
strings which contain at least one exclamation mark or asterisk symbol.

Coding problems

Write a function which takes an integer input n and prints the thirteen times tables
from 1 * 13 untiln * 13.

Write a function which takes a tuple of strings and returns a list containing only the
strings which contain at least one exclamation mark or asterisk symbol.

def thirteen_table (num) : def fun_filter (words) :
for i in range (1, num+l): out =[]
print (f"{i} * 13 = {i * 13}") for word in words:
gt iU an word or '#'" in word:

out.append (word)
return out

