
COMP10001
Week 5



Methods, iteration and loops



What is a method? How are methods different/similar to functions?



What is a method? How are methods different/similar to functions?

- Like functions, methods run some pre-defined code to achieve a task
- Both are called with brackets, containing arguments
- Methods are “attached” to an object with a full stop:

- function_name(arguments, …) vs object.method_name(arguments, …)
- So methods can do fun things like edit the object they’re called on in-place!



Let’s do an exercise!

Let s="Computing is FUN!". What happens when we apply the methods below?

s.isupper()

s.upper()

s.count(“n”)

s.endswith(“fun!”)

s.strip(“!”)

s.replace(“i”, “!”)



Let’s do an exercise!

Let s="Computing is FUN!". What happens when we apply the methods below?

s.isupper()

s.upper()

s.count(“n”)

s.endswith(“fun!”)

False

True

“COMPUTING IS FUN!”

2

s.strip(“!”)

“Computing is FUN”

s.replace(“i”, “!”)

“Comput!ng !s FUN!”



What is the difference between a list and a tuple?



What is the difference between a list and a tuple?

- Lists are mutable
- Tuples are not!



What is the difference between a list and a tuple?

- Lists are mutable
- Tuples are not!
- We can make changes to mutable items “in-place”

- E.g. lst += [3]



What is the difference between a list and a tuple?

- Lists are mutable
- Tuples are not!
- We can make changes to mutable items “in-place”

- E.g. lst += [3]
- Lists initialised with square brackets

- E.g. lst = [1,2,3]
- Tuples initialised with rounds brackets

- E.g. tup = (1,)
- Or the tuple() function!



How do we add and remove items from a list?



How do we add and remove items from a list?

- .append(item), 
- .insert(index, item), 
- .extend(lst)

- .pop(index)
- del
- .remove(item)
- .clear()



Let’s do an exercise!

Let lst=[2, ("green", “eggs”, “ham”), False]. What happens when we 
use the expressions below?

lst[2]

lst[1][-2]

lst.append(5); print(lst)

lst[1][-2][:3]

lst.pop(2); print(lst)

lst.reverse(); print(lst)



Let’s do an exercise!

Let lst=[2, ("green", “eggs”, “ham”), False]. What happens when we 
use the expressions below?

lst[2]

lst[1][-2]

lst.append(5); print(lst)

lst[1][-2][:3]

False

True

“eggs”

[2, ("green", “eggs”, “ham”), False, 5]

lst.pop(2); print(lst)

False
[2, ("green", “eggs”, “ham”)]
lst.reverse(); print(lst)

[False, ("green", “eggs”, “ham”), 2]



What is “iteration” in programming? Why do we need it?



What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
- often with a small change each time



What is “iteration” in programming? Why do we need it?

- Iteration = executing a section of code repeatedly
- often with a small change each time

- We need to do this all the time in programming!
- Writing the same instructions over and over again is inefficient! Unreadable! 

Error-prone!



What are the two types of loop in Python? How do we structure them?



What are the two types of loop in Python? How do we structure them?

- For loops

For <loop variable> in <sequence>:

Do something with the loop variable

…



What are the two types of loop in Python? How do we structure them?

- For loops

For <loop variable> in <sequence>:

Do something with the loop variable

…

- While loops

While <condition>:

Do something

…



How are the two types of loops different? 
When should we use one over the other?



How are the two types of loops different? 
When should we use one over the other?

- For loop iterates over a sequence: 
- finite/controlled number of iterations



How are the two types of loops different? 
When should we use one over the other?

- For loop iterates over a sequence: 
- finite/controlled number of iterations

- While loop iterates until truth of condition changes: 
- infinite/uncontrolled number of iterations



How are the two types of loops different? 
When should we use one over the other?

- For loop iterates over a sequence: 
- finite/controlled number of iterations

- While loop iterates until truth of condition changes: 
- infinite/uncontrolled number of iterations

- For loops are great when we know in advance how many times we need our 
loop to run

- While loops are great when we don’t know!



Can we always convert a for into a while and vice versa?



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)

i = 1
j = 1
while i < 5:

print(i, j, i + j)
hold = i
i = i + j
j = hold



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)

i = 1
j = 1
while i < 5:

print(i, j, i + j)
hold = i
i = i + j
j = hold

i j i + j



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)

i = 1
j = 1
while i < 5:

print(i, j, i + j)
hold = i
i = i + j
j = hold

i j i + j

1 1 2



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)

i = 1
j = 1
while i < 5:

print(i, j, i + j)
hold = i
i = i + j
j = hold

i j i + j

1 1 2

2 1 3



Can we always convert a for into a while and vice versa?

- For can always be converted into a while
- Converting a while into a for is not always possible!
- To convert a loop, identify:

a. What the loop variable is initialised to
b. How the loop variable is incremented/changed during each iteration
c. When the loop should terminate

lst = [“a”,”b”,”c”]
for letter in lst:

print(letter + “!”)

i = 1
j = 1
while i < 5:

print(i, j, i + j)
hold = i
i = i + j
j = hold

i j i + j

1 1 2

2 1 3

3 2 5



Exercises!



What is the output of the following snippets?



Rewrite the snippets with an alternative loop command!



What’s wrong with this code? How should we fix it?



Let’s jump in breakout rooms for Ex. 3



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Ex. 3 solutions



Last exercise for today!
Do the following snippets do the same thing? 
What are their advantages/disadvantages?



Coding problems

Write a function which takes an integer input n and prints the thirteen times tables 
from 1 * 13 until n * 13.

Write a function which takes a tuple of strings and returns a list containing only the 
strings which contain at least one exclamation mark or asterisk symbol.



Coding problems

Write a function which takes an integer input n and prints the thirteen times tables 
from 1 * 13 until n * 13.

Write a function which takes a tuple of strings and returns a list containing only the 
strings which contain at least one exclamation mark or asterisk symbol.


