
COMP10001
Week 9

What is a “list comprehension”? How do we write one and
how do they simplify our code?

What is a “list comprehension”? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)

What is a “list comprehension”? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)

- [<expression> <for iteration statement> <optional if filter condition>]

What is a “list comprehension”? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)

- [<expression> <for iteration statement> <optional if filter condition>]
- For each iteration, the outcome of <expression> is added to the collection

- If the <if filter condition> is included, this only happens when the condition is True

What is a “list comprehension”? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)

- [<expression> <for iteration statement> <optional if filter condition>]
- For each iteration, the outcome of <expression> is added to the collection

- If the <if filter condition> is included, this only happens when the condition is True
- Avoid overcomplicating these! They’re a neat way to wrap up simple loops

into one line!

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

- [i**2 for i in range(10)] -> list!
- {i**2 for i in range(10)} -> set!

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

- [i**2 for i in range(10)] -> list!
- {i**2 for i in range(10)} -> set!
- (i**2 for i in range(10)) -> NOT a tuple!

- This is a generator, which we can iterate over. You don’t need to know about generators, but
you do need to know that this expression doesn’t give us a tuple!

Exercise!

Evaluate the following list comprehensions. Also, write some equivalent Python
code that doesn’t use a comprehension.

Why do we use files? Could we use computers without
them?

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated
- That’s different to internal data storage like lists and dictionaries - they are in

temporary memory and are erased when the program finishes

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated
- That’s different to internal data storage like lists and dictionaries - they are in

temporary memory and are erased when the program finishes
- Files also allow us to organise/structure our data …

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated
- That’s different to internal data storage like lists and dictionaries - they are in

temporary memory and are erased when the program finishes
- Files also allow us to organise/structure our data …
- … and share it!

What are the steps to reading and writing files?

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)
- <mode> defaults to “r”, for reading
- <mode> could also be set to <w> for writing

- The contents of a file, if it already exists, are overwritten
- … Or <a> for appending to a file that already exists

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)
- <mode> defaults to “r”, for reading
- <mode> could also be set to <w> for writing

- The contents of a file, if it already exists, are overwritten
- … Or <a> for appending to a file that already exists

- To read a file, we can use:

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)
- <mode> defaults to “r”, for reading
- <mode> could also be set to <w> for writing

- The contents of a file, if it already exists, are overwritten
- … Or <a> for appending to a file that already exists

- To read a file, we can use:
- file.read() for a whole file
- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)
- <mode> defaults to “r”, for reading
- <mode> could also be set to <w> for writing

- The contents of a file, if it already exists, are overwritten
- … Or <a> for appending to a file that already exists

- To read a file, we can use:
- file.read() for a whole file
- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

- To write a file, we use file.write() to write a string to the output

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two
arguments:

- open(<filename>, <mode>)
- <mode> defaults to “r”, for reading
- <mode> could also be set to <w> for writing

- The contents of a file, if it already exists, are overwritten
- … Or <a> for appending to a file that already exists

- To read a file, we can use:
- file.read() for a whole file
- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

- To write a file, we use file.write() to write a string to the output
- When we’re done, we close the file, with file.close()

What is a “csv” file and why is it useful for storing and
manipulating data?

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

- Rows of data with individual values, separated by a comma (,) and rows
separated by a newline character (\n)

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

- Rows of data with individual values, separated by a comma (,) and rows
separated by a newline character (\n)

- When we’re using data, it’s often natural to store it in rows and columns
- So csvs are very powerful!

Fill in the blanks!

Fill in the blanks!

Given the following csv file and Python script, what is the
code attempting to find and print?

Using a list comprehension, (re)write the function allnum
that takes a list of strings, and returns a list of those that
exclusively contain digits

Using a list comprehension, (re)write the function allnum
that takes a list of strings, and returns a list of those that
exclusively contain digits

Using a list comprehension, (re)write the make_gamertag
function that takes a name string and returns a string with
a hyphen after each letter

Using a list comprehension, (re)write the make_gamertag
function that takes a name string and returns a string with
a hyphen after each letter

