COMP10001

Week 9

What is a “list comprehension™? How do we write one and
how do they simplify our code?

What is a “list comprehension™? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)

What is a “list comprehension™? How do we write one and
how do they simplify our code?
- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,

dictionary)
- [<expression> <for iteration statement> <optional if filter condition>]

What is a “list comprehension™? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)
- [<expression> <for iteration statement> <optional if filter condition>]

- For each iteration, the outcome of <expression> is added to the collection
If the <if filter condition> is included, this only happens when the condition is True

What is a “list comprehension™? How do we write one and
how do they simplify our code?

- A cheeky shortcut for simple iteration tasks involving a collection (i.e. list, set,
dictionary)
- [<expression> <for iteration statement> <optional if filter condition>]

- For each iteration, the outcome of <expression> is added to the collection
If the <if filter condition> is included, this only happens when the condition is True

- Avoid overcomplicating these! They’re a neat way to wrap up simple loops
into one line!

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

- [i**2 foriin range(10)] -> list!
- {i*™*2foriin range(10)} -> set!

What happens if we use curly brackets instead of square
brackets around a list comprehension? How about
parentheses?

- [i**2 foriin range(10)] -> list!
- {i*™*2foriin range(10)} -> set!
- (i"™2foriinrange(10)) -> NOT a tuple!

This is a generator, which we can iterate over. You don’t need to know about generators, but
you do need to know that this expression doesn’t give us a tuple!

Exercise!

Evaluate the following list comprehensions. Also, write some equivalent Python
code that doesn’t use a comprehension.

(@) [(name, 0) for name in ("evelyn", "alex", "sam")]

[o)

(b) [i**x2 for i in range(5) if i % 2 == 1]
(c) "".join([letter.upper() for letter in "python"])

(d) [(row, col) for row in range(3, 5) for col in range(2)]

Why do we use files? Could we use computers without
them?

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated
- That's different to internal data storage like lists and dictionaries - they are in
temporary memory and are erased when the program finishes

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated

- That's different to internal data storage like lists and dictionaries - they are in
temporary memory and are erased when the program finishes

- Files also allow us to organise/structure our data ...

Why do we use files? Could we use computers without
them?

- Files store data permanently - they persist after a program is terminated

- That's different to internal data storage like lists and dictionaries - they are in
temporary memory and are erased when the program finishes

- Files also allow us to organise/structure our data ...

- ... and share it!

What are the steps to reading and writing files?

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
open(<filename>, <mode>)

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
- open(<filename>, <mode>)
- <mode> defaults to “r’, for reading
- <mode> could also be set to <w> for writing
- The contents of afile, if it already exists, are overwritten
- ... Or <a> for appending to a file that already exists

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
- open(<filename>, <mode>)
- <mode> defaults to “r’, for reading
- <mode> could also be set to <w> for writing
- The contents of afile, if it already exists, are overwritten
- ... Or <a> for appending to a file that already exists

- Toread a file, we can use:

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
- open(<filename>, <mode>)
- <mode> defaults to “r’, for reading
- <mode> could also be set to <w> for writing
- The contents of afile, if it already exists, are overwritten
- ... Or <a> for appending to a file that already exists

- Toread a file, we can use:
- file.read() for a whole file

- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
- open(<filename>, <mode>)
- <mode> defaults to “r’, for reading
- <mode> could also be set to <w> for writing
- The contents of afile, if it already exists, are overwritten
- ... Or <a> for appending to a file that already exists

- Toread a file, we can use:

- file.read() for a whole file
- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

- To write a file, we use file.write() to write a string to the output

What are the steps to reading and writing files?

- In Python, to open a file we use the open() function, which has two

arguments:
- open(<filename>, <mode>)
- <mode> defaults to “r’, for reading
- <mode> could also be set to <w> for writing
- The contents of afile, if it already exists, are overwritten
- ... Or <a> for appending to a file that already exists

- Toread a file, we can use:

- file.read() for a whole file
- file.readline() to read one line of a file, as a string
- file.readlines() to read an entire file, returning a list with each row of the file a string in the list

- To write a file, we use file.write() to write a string to the output
- When we're done, we close the file, with file.close()

What is a “csv” file and why is it useful for storing and
manipulating data?

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

Rows of data with individual values, separated by a comma (,) and rows
separated by a newline character (\n)

What is a “csv” file and why is it useful for storing and
manipulating data?

- A comma separated values file is a text file stored in a specific format, like a
spreadsheet

- Rows of data with individual values, separated by a comma (,) and rows
separated by a newline character (\n)

- When we’re using data, it's often natural to store it in rows and columns
So csvs are very powerful!

Fill in the blanks!

outfile = ("out.txt", "w")
with open("in.txt",) as infile:
e N nom=N

for line in
outfile. f"line:_{line_no}, length:_{len(line) }\n")
line_no += 1
outfile.write ("The End")

Fill in the blanks!

oishzitalllis = ("out.txt", "w")
with open("in.txt",) as infile:
I el noM—

for line in
outfile. f"line:_{line_no}, length:_{len(line) }\n")
line_no += 1
outfile.write ("The End")

open
Irl
infile.readlines ()
write
outfile.close()

Given the following csv file and Python script, what is the
code attempting to find and print?

travel.csv process.py

City,Train, Tram, Bus,Ferry, Car, Total

import csv
Melbourne, 242969,55169,31937,783,1282997,1613855

1
Sydney, 368572,3210,138340,9007,1206350, 1725482 4
Adelaide, 13715, 4137, 33673,211, 390360, 442102 3 fp = open("travel.csv")
Brisbane, 62069,229,58228,3761, 663353, 787650 4 city = "'
Perth,56417,223,37899,373,594571, 689489 s curr_max = 0.0
6 for row in csv.DictReader (fp) :
7 ferry = int (row["Ferry"])
8 total = int(row|["Total"])
9 if ferry / total > curr_max:

—
(=}

city = row["City"]
curr_max = ferry / total
PEIRE (Ccity)

[
N =

Using a list comprehension, (re)write the function allnum
that takes a list of strings, and returns a list of those that
exclusively contain digits

allnum([*3"; "=4%, *&', "'3:.14le%, *UxrCrft'; "blergl”])

shouldreturn ['3', '5']

Using a list comprehension, (re)write the function allnum
that takes a list of strings, and returns a list of those that
exclusively contain digits

allnum([*3"; "=4%, *&', "'3:.14le%, *UxrCrft'; "blergl”])

shouldreturn ['3', '5']

def allnum(strlist) :
return f[curr str for curr Str in strlist 1f curr str.isdigit ()]

Using a list comprehension, (re)write the make gamertag
function that takes a name string and returns a string with
a hyphen after each letter

make_gamertag ('Alex"') should return 'A-1-e—-x-"'.

Using a list comprehension, (re)write the make gamertag
function that takes a name string and returns a string with
a hyphen after each letter

make_gamertag ('Alex"') should return 'A-1-e—-x-"'.

def make_gamertaqg (name) :
return "".join([letter + "-" for letter in name])

You’ve found a secret message:

secrel message.txt
erkbvl ur kbvd tlmexr:

gxoxk
gxoxk
gxoxk
gxoxk
gxoxk
gxoxk

zhggt
zhggt
zhggt
zhggt
zhggt
zhggt

zbox rhn ni

exm rhn whpg

kng tkhngw tgw wxlxkm rhn
ftdx rhn vkr

ltr zhhwurx

mxee t ebx tgw ankm rhn

All that you know about the message is that it it encrypted by a basic shift cipher (also known as a Caesar
cipher, where each letter is shifted by some constant number of places in the alphabet), any alphabetic
character in the message is lowercase, and that it contains the string segment 'desert'.

Write a function to decrypt the message that takes an infilename, outfilename and segment (all
strings). You can use a brute-force approach (try all possible values) to guess the number to shift by. You
might find the functions ord (character) and chr (number) useful!

