
COMP10001
Week 6

With Lucy



First, some revision!



Do the following snippets do the same thing? 
What are their advantages/disadvantages?



Consider the following loops. Are the two for loops equivalent? Why 
might you choose one over the other?



Dictionaries and sets



When should we use a dictionary? How is it structured? 
How do we add and delete items?



When should we use a dictionary? How is it structured? 
How do we add and delete items?

- Dictionaries hold pairs of keys and values



When should we use a dictionary? How is it structured? 
How do we add and delete items?

- Dictionaries hold pairs of keys and values
- Useful for counting frequencies, storing information about unique items
- Access values with index notation: dictionary_name[key] gives value



When should we use a dictionary? How is it structured? 
How do we add and delete items?

- Dictionaries hold pairs of keys and values
- Useful for counting frequencies, storing information about unique items
- Access values with index notation: dictionary_name[key] gives value
- Add values by declaring a key value pair: dictionary_name[key] = value
- Remove values with .pop(): dictionary_name.pop(key)



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error



When should we use a set? How do sets differ from lists 
and dictionaries?



When should we use a set? How do sets differ from lists 
and dictionaries?

- Sets store collections of unique objects



When should we use a set? How do sets differ from lists 
and dictionaries?

- Sets store collections of unique objects
- E.g. use to remove duplicates from a list



When should we use a set? How do sets differ from lists 
and dictionaries?

- Sets store collections of unique objects
- E.g. use to remove duplicates from a list
- Also use to get access to set operations!



What operations can you perform on sets? How do you 
add and remove items from sets?



What operations can you perform on sets? How do you 
add and remove items from sets?

- Union: 
- Intersection: 
- Difference: 



- Union: s1 | s2 or s1.union(s2)
- Intersection:
- Difference: 

What operations can you perform on sets? How do you 
add and remove items from sets?



- Union: s1 | s2 or s1.union(s2)
- Intersection: s1 & s2 or s1.intersection(s2)
- Difference: 

What operations can you perform on sets? How do you 
add and remove items from sets?



What operations can you perform on sets? How do you 
add and remove items from sets?

- Union: s1 | s2 or s1.union(s2)
- Intersection: s1 & s2 or s1.intersection(s2)
- Difference: s1 - s2 or s1.difference(s2)

s1s2



What operations can you perform on sets? How do you 
add and remove items from sets?

- Union: s1 | s2 or s1.union(s2)
- Intersection: s1 & s2 or s1.intersection(s2)
- Difference: s1 - s2 or s1.difference(s2)

- Adding an item: my_set.add(item)
- Removing an item: my_set.remove(item)



Exercises!



What is None? How is it used?



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()

- Represents the absence of a result



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()

- Represents the absence of a result
- Its own type (not really Boolean!) so no value of any other type has equality 

with it!



What is the difference between sorted() and .sort() when 
applied to a list?



What is the difference between sorted() and .sort() when 
applied to a list?

- Both sorted() and .sort() are able to sort lists



What is the difference between sorted() and .sort() when 
applied to a list?

- Both sorted() and .sort() are able to sort lists
- sorted(my_list) returns a new list, containing the items in my_list, 

sorted
- my_list.sort() does not return anything (its value is None)



What is the difference between sorted() and .sort() when 
applied to a list?

- Both sorted() and .sort() are able to sort lists
- sorted(my_list) returns a new list, containing the items in my_list, 

sorted
- my_list.sort() does not return anything (its value is None)
- sorted(my_list) does not change the value of the variable my_list
- my_list.sort() changes the value of the variable my_list



What is the difference between sorted() and .sort() when 
applied to a list?

- Both sorted() and .sort() are able to sort lists
- sorted(my_list) returns a new list, containing the items in my_list, 

sorted
- my_list.sort() does not return anything (its value is None)
- sorted(my_list) does not change the value of the variable my_list
- my_list.sort() changes the value of the variable my_list

- .sort() changes the value of my_list in-place



What is the difference between sorted() and .sort() when 
applied to a list?
- For example:



What is the difference between sorted() and .sort() when 
applied to a list?
- For example:

[1,2,3] None [2,1,3] [1,2,3]



Exercises!



Write a function with takes a string as inputs and print the frequency of 
each character in the string, using a dictionary

E.g. freq_counts(“booboo”) 
should print:

b 2

o 4



Write a function with takes a string as inputs and print the frequency of 
each character in the string, using a dictionary

E.g. freq_counts(“booboo”) 
should print:

b 2

o 4



Write a function which takes two lists as input and returns a list 
containing the numbers which they both have in common

E.g., in_common([1,2,4], [3,4,5]) should return [4]



Write a function which takes two lists as input and returns a list 
containing the numbers which they both have in common

E.g., in_common([1,2,4], [3,4,5]) should return [4]


