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First, some revision!



Do the following snippets do the same thing? 
What are their advantages/disadvantages?



Consider the following loops. Are the two for loops equivalent? Why 
might you choose one over the other?



Dictionaries and sets



When should we use a dictionary? How is it structured? 
How do we add and delete items?
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When should we use a dictionary? How is it structured? 
How do we add and delete items?

- Dictionaries hold pairs of keys and values
- Useful for counting frequencies, storing information about unique items
- Access values with index notation: dictionary_name[key] gives value
- Add values by declaring a key value pair: dictionary_name[key] = value
- Remove values with .pop(): dictionary_name.pop(key)



What is the difference between using the .pop() method on 
a dictionary and using it on a list?

- List
- .pop() called without an index argument removes the last item in the list
- .pop(index) removes the item in the list at that index

- Dictionary
- .pop(key) deletes the key:value pair associated with that key in a dictionary
- .pop() called without a key on a dictionary raises an error
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When should we use a set? How do sets differ from lists 
and dictionaries?

- Sets store collections of unique objects
- E.g. use to remove duplicates from a list
- Also use to get access to set operations!
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What operations can you perform on sets? How do you 
add and remove items from sets?

- Union: s1 | s2 or s1.union(s2)
- Intersection: s1 & s2 or s1.intersection(s2)
- Difference: s1 - s2 or s1.difference(s2)

- Adding an item: my_set.add(item)
- Removing an item: my_set.remove(item)



Exercises!



What is None? How is it used?



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()

- Represents the absence of a result



What is None? How is it used?

- None is a special value:
- The thing that’s returned when a function has no return statement
- Value we get when we assign to many mutating methods, e.g. .append()

- Represents the absence of a result
- Its own type (not really Boolean!) so no value of any other type has equality 

with it!
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What is the difference between sorted() and .sort() when 
applied to a list?

- Both sorted() and .sort() are able to sort lists
- sorted(my_list) returns a new list, containing the items in my_list, 

sorted
- my_list.sort() does not return anything (its value is None)
- sorted(my_list) does not change the value of the variable my_list
- my_list.sort() changes the value of the variable my_list

- .sort() changes the value of my_list in-place
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What is the difference between sorted() and .sort() when 
applied to a list?
- For example:

[1,2,3] None [2,1,3] [1,2,3]



Exercises!
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each character in the string, using a dictionary
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