
COMP1001
Week 11

What is recursion? What makes a function recursive?

What is recursion? What makes a function recursive?

- A recursive function is able to call itself

What is recursion? What makes a function recursive?

- A recursive function is able to call itself
- Rather than iterating with a loop, a recursive function usually calls itself with a

smaller or broken-down version of the input until it reaches an “answer”

What are the two key parts of a recursive function?

What are the two key parts of a recursive function?

- Recursive case
- Base case

What are the two key parts of a recursive function?

- Recursive case:
- the function calls itself, with a different (smaller/broken-down) input

- Base case:
- the function has reached the smallest/simplest version of the problem and stops recursing
- (doesn’t call itself further)

In what cases is recursion useful? Where should it be used
with caution?

In what cases is recursion useful? Where should it be used
with caution?

- Useful when an iterative solution requires nesting of loops proportional to the
size of the input

In what cases is recursion useful? Where should it be used
with caution?

- Useful when an iterative solution requires nesting of loops proportional to the
size of the input

- Otherwise there’s usually an equally elegant iterative solution!
- Function calls are computationally expensive so we would select the iterative function in this

case

Here’s a function that finds the nth Fibonacci number:

def fib(n):
 if n in [0,1]:
 return n
 return fib(n-1) - fn(n-2)

Visualise it!
https://recursion.vercel.app/

https://recursion.vercel.app/

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

2 5 3 4 8

5 3 4 8

3 4 8

4 8 8

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

- Returns largest element in list/tuple

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

2 5 3 4 8

3 4 8

4 8

84

2 5

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

- Returns the largest element in the
list/tuple

Identify the parts of the function!

- Base case
- Recursive case
- What the function does

- Returns the largest element in the
list/tuple

- Binary search!

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

E.g.1 If my amount is 23 and
I have coins with values
[3,6,8] then I can make 23:
3+6+6+8

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

E.g.1 If my amount is 23 and
I have coins with values
[3,6,8] then I can make 23:
3+6+6+8

E.g.2 If my amount is 11 and
I have coins with values
[2,8,6] then I can’t make 11!

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

E.g.1 If my amount is 23 and
I have coins with values
[3,6,8] then I can make 23:
3+6+6+8

E.g.2 If my amount is 11 and
I have coins with values
[2,8,6] then I can’t make 11!

Practice programming

When handling csv files, there are a couple of ways we can get the data out of the csv file and into our
program: csv.reader and csv.DictReader. You’ll have used csv.reader in the Grok worksheets, so this time
try to use csv.DictReader.

Write a function count_sales(csv_filename), that takes a string csv filename, and returns a dictionary that
counts the frequency of products sold. On the example file shown below, it should return:

{'Toy Car': 2, 'Comic Book': 1}

import random

come up with a large example ...

all_subjects = ["A", "B", "C", "D", "E"]

all_zbinis = [(random.randint(0,255), random.sample(all_subjects,

random.randint(1,3))) for i in range(1000)]

What is an “algorithm”? Why are algorithms a large area of
Computer Science

What is an “algorithm”? Why are algorithms a large area of
Computer Science

- Algorithm: sequence of steps for solving an instance of a particular problem
type

What is an “algorithm”? Why are algorithms a large area of
Computer Science

- Algorithm: sequence of steps for solving an instance of a particular problem
type

- We have been solving problems with algorithms all semester!
- As we deal with more and more data, the efficiency of our algorithms

becomes increasingly important
- Think of “programming” as “literacy” and “algorithms” as “literature”

- Programming: learning rules of grammar and structure so a computer can understand what we
intend to communicate

- Algorithms: learning good code, elegant ways of solving problems and how to use more
advanced vocabulary!

What are the two criteria with which we can judge
algorithms?

What are the two criteria with which we can judge
algorithms?

- Correctness
- Efficiency

What are the two criteria with which we can judge
algorithms?

- Correctness
- Does the algorithm give the correct output?

- Efficiency
- How “good” is the algorithm?

- Speed, storage, processing power, etc.
- We haven’t looked at this in COMP10001! But it’s important to think about as you learn more

about algorithms

What are the two criteria with which we can judge
algorithms?

- Correctness
- Does the algorithm give the correct output?

- Efficiency
- How “good” is the algorithm?

- Speed, storage, processing power, etc.
- We haven’t looked at this in COMP10001! But it’s important to think about as you learn more

about algorithms
- Which would you prefer? An algorithm guaranteed to calculate the correct

answer that takes 150 years to finish, or an algorithm that takes seconds but
may not always produce the correct result

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

- Exact approach: gives correct solution
- Approximate approach: gives almost the correct solution, through estimation,

simulation, etc.

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

- Exact approach: gives correct solution
- Approximate approach: gives almost the correct solution, through estimation,

simulation, etc.
- If a problem is too complex to calculate with full completeness, an

approximate approach might be more useful!

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Heuristic search
- Simulation
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Heuristic search
- Simulation
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite

to guarantee completion. E.g. linear search
- Heuristic search
- Simulation
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite

to guarantee completion. E.g. linear search
- Heuristic search

- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution
would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!

- Simulation
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite

to guarantee completion. E.g. linear search
- Heuristic search

- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution
would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!

- Simulation
- Approximate. Finds a solution by generating lots of data to predict an overall trend. E.g.

simulate play of a game to find out if it’s worth playing
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite

to guarantee completion. E.g. linear search
- Heuristic search

- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution
would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!

- Simulation
- Approximate. Finds a solution by generating lots of data to predict an overall trend. E.g.

simulate play of a game to find out if it’s worth playing
- Divide and conquer

- Exact. Divides problem into sub-problems which can be more easily solved. E.g. binary search

