COMP1001

Week 11

What is recursion? What makes a function recursive?

What is recursion? What makes a function recursive?

- Arecursive function is able to call itself

What is recursion? What makes a function recursive?

- Arecursive function is able to call itself
- Rather than iterating with a loop, a recursive function usually calls itself with a
smaller or broken-down version of the input until it reaches an “answer”

What are the two key parts of a recursive function?

What are the two key parts of a recursive function?

- Recursive case
- Base case

What are the two key parts of a recursive function?

- Recursive case:
- the function calls itself, with a different (smaller/broken-down) input
- Base case:

- the function has reached the smallest/simplest version of the problem and stops recursing
- (doesn’t call itself further)

In what cases is recursion useful? Where should it be used
with caution?

In what cases is recursion useful? Where should it be used
with caution?

- Useful when an iterative solution requires nesting of loops proportional to the
size of the input

In what cases is recursion useful? Where should it be used
with caution?

- Useful when an iterative solution requires nesting of loops proportional to the
size of the input

- Otherwise there’s usually an equally elegant iterative solution!

Function calls are computationally expensive so we would select the iterative function in this
case

Here’s a function that finds the nth Fibonacci number:

def fib(n):
if nin [0,1]:
return n
return fib(n-1) - fn(n-2)

Visualise it!
https://recursion.vercel.app/

https://recursion.vercel.app/

|dentify the parts of the function!

- Base case
- Recursive case

def :
- What the function does By SEE LVILX)

if len(x) == 1:
return x[0]
else:
y = mystery(x[1l:])
1E % [Q) > ¥
return x[0]
else:
return y

|dentify the parts of the function!

- Base case
- Recursive case

def :
- What the function does By SEE LVILX)

if len(x) == 1:
return x[0]
else:
y = mystery(x[1l:])
1E % [Q) > ¥
return x[0]
else:
return y

|dentify the parts of the function!

- Base case
- Recursive case

def £ :
- What the function does B S SEe LY(X)

if len(x) ==
return x[0]
else:
y = mystery(x[1l:])
’ ° 3 4 8\ if x[0] > y:
_;3 return x[0]
> 3 4 8 else:
return y

|dentify the parts of the function!

- Base case
- Recursive case

- What the function does
- Returns largest element in list/tuple

def mystery (x):
if len(x) ==
return x[0]
else:
y = mystery(x[1l:])
1E % [Q) > ¥
return x[0]
else:
return y

|dentify the parts of the function!

- Base case def mistero(x):
. =1
- Recursive case é SRLE)
_ if a == 1:
- What the function does return x[0]
else:

y = mistero(x[a//2:])
z = mistero(x[:a//2])
s o e AN 7 Vi

return 2z
else:

recurn y

|dentify the parts of the function!

- Base case def mistero(x):
. =1
- Recursive case é SRLE)
_ if a == 1:
- What the function does return x[0]
else:

y = mistero(x[a//2:])
z = mistero(x[:a//2])
s o e AN 7 Vi

return 2z
else:

recurn y

|dentify the parts of the function!

- Base case def mistero (x):
- Recursive case ‘z f=al:(x)
- What the function does retur,; x[0]
else:
2 5 3 4 8 y = mistero(x[a//2:])
z = mistero(x[:a//2])
5 3 4 g 5 A 7 F
return z
else:
4 8 return y

|dentify the parts of the function!

- Base case def mistero(x):

- Recursive case a = len (x)
i if a == 1:
- What the function does FEENER 0]

- Returns the largest element in the

else:
list/tuple

y mistero(x[a//2:])
z mistero(x[:a//2])
5 A 7 F

return 2z
else:

recurn y

|dentify the parts of the function!

- Base case def mistero(x):
: = 1
- Recursive case if B ff(x)
- What the function does Feturn %0
- Returns the largest element in the else:

list/tuple

y = mistero(x[a//2:])
- Binary search!

z = mistero(x[:a//2])
5 A 7 F

return 2z
else:

recurn y

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

def can_make_change (amount, coins):

base case: success

return True

base case: failure
if amount < 0 or len(coins) == 0:

recursive case: handle two possibilities, either:
1. another of this coin value gets used, or
2. we don't need another coin of this wvalue
coin = coins[-1]
return (can_make_change (, coins)
or can_make_change (amount, coins[:-1]))

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

E.g.1 If my amount is 23 and
| have coins with values
[3,6,8] then | can make 23:
3+6+6+8

def can_make_change (amount, coins):

base case: success

return True

base case: failure
if amount < 0 or len(coins) == 0:

recursive case: handle two possibilities, either:
1. another of this coin value gets used, or
2. we don't need another coin of this wvalue
coin = coins[-1]
return (can_make_change (, coins)

or can_make_change (amount, coins[:-1]))

Fill in the blanks!

Is it possible to make some
amount from a given
selection of coin values,
possibly using multiple coins
of the same value?

E.g.1 If my amount is 23 and
| have coins with values
[3,6,8] then | can make 23:
3+6+6+8

E.g.2 If my amount is 11 and
| have coins with values
[2,8,6] then | can’t make 11!

def can_make_change (amount, coins):

base case: success

return True

base case: failure
if amount < 0 or len(coins) == 0:

recursive case: handle two possibilities, either:
1. another of this coin value gets used, or
2. we don't need another coin of this wvalue
coin = coins[-1]
return (can_make_change (, coins)

or can_make_change (amount, coins[:-1]))

Fill in the blanks!

def can_make_change (amount, coins):

Is it possible to make some # base case: success
amount from a given if amount ==
selection of coin values, return True

possibly using multiple coins
of the same value?

base case: failure
if amount < 0 or len(coins) == 0:

return False

E.g.1 If my amount is 23 and

| have coins with values # recursive case: handle two possibilities, either:
[3,6,8] then | can make 23: # 1. another of this coin value gets used, or
3+6+6+8 # 2. we don't need another coin of this value

coin = coins[-1]
E.g.2 If my amount is 11 and return (can_make_change (amount - coin, coins)

| have coins with values or can_make_change (amount, coins[:-1]))

[2,8,6] then | can’t make 11!

Practice programming

When handling csv files, there are a couple of ways we can get the data out of the csv file and into our
program: csv.reader and csv.DictReader. You'll have used csv.reader in the Grok worksheets, so this time
try to use csv.DictReader.

Write a function count_sales(csv_filename), that takes a string csv filename, and returns a dictionary that
counts the frequency of products sold. On the example file shown below, it should return:

{'Toy Car'": 2, 'Comic Book': 1}

Date,Product,Customer
2024-03-21,Toy Car,Bluey
2024-04-12,Comic Book,Bingo
2024=-05=-07,Toy Car,Rusty

import csv

PRODUCT = "Product”
READ_MODE = "r"

def count_sales (csv_filename) :
product_count = {}

with open (csv_filename, READ MODE) as file:

for row in csv.DictReader (file):
product = row[PRODUCT]

if product in product count:
product_count [product] += 1

else:
product__count [product] = 1

return product_count

import random

all SU.bjeCtS — I:"A", "B"’ "C", "D"’ "E":I

all zbinis = [(random.randint (0,255), random.sample(all subjects,

random.randint (1,3))) for i1 in range(1000)]

Challenge: You’ve found a secret message:

Secret message. L Xl
erkbvl ur kbvd tlmexr:

gxoxk
gxoxk
gxoxk
gxoxk
gxoxk
gxoxk

zhggt
zhggt
zhggt
zhggt
zhggt
zhggt

zbox rhn ni

exm rhn whpg

kng tkhngw tgw wxlxkm rhn
ftdx rhn vkt

ltr zhhwurx

mxee t ebx tgw ankm rhn

All that you know about the message is that it is encrypted by a basic shift cipher (also known as a Caesar
cipher, where each letter is shifted by some constant number of places in the alphabet), any alphabetic
character in the message is lowercase, and that it contains the string segment 'desert'.

Write a function to decrypt the message that takes an infilename, outfilename and segment (all
strings, and you can assume that all files exist). You can use a brute-force approach (try all possible val-
ues) to guess the number to shift by. You might find the functions ord (character) and chr (number)

useful!

What is an “algorithm™? Why are algorithms a large area of
Computer Science

What is an “algorithm™? Why are algorithms a large area of
Computer Science

- Algorithm: sequence of steps for solving an instance of a particular problem
type

What is an “algorithm™? Why are algorithms a large area of
Computer Science

Algorithm: sequence of steps for solving an instance of a particular problem
type

We have been solving problems with algorithms all semester!

As we deal with more and more data, the efficiency of our algorithms
becomes increasingly important

Think of “programming” as “literacy” and “algorithms” as “literature”
Programming: learning rules of grammar and structure so a computer can understand what we
intend to communicate
Algorithms: learning good code, elegant ways of solving problems and how to use more
advanced vocabulary!

What are the two criteria with which we can judge
algorithms?

What are the two criteria with which we can judge
algorithms?

- Correctness
- Efficiency

What are the two criteria with which we can judge
algorithms?

- Correctness
- Does the algorithm give the correct output?
- Efficiency
- How “good” is the algorithm?
- Speed, storage, processing power, etc.

- We haven’t looked at this in COMP10001! But it's important to think about as you learn more
about algorithms

What are the two criteria with which we can judge
algorithms?

- Correctness
- Does the algorithm give the correct output?
- Efficiency
- How “good” is the algorithm?
- Speed, storage, processing power, etc.
- We haven’t looked at this in COMP10001! But it's important to think about as you learn more
about algorithms

- Which would you prefer? An algorithm guaranteed to calculate the correct
answer that takes 150 years to finish, or an algorithm that takes seconds but
may not always produce the correct result

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

- Exact approach: gives correct solution
- Approximate approach: gives almost the correct solution, through estimation,
simulation, etc.

What is the difference between exact and approximate
approaches to algorithm design? Why might an
approximate approach be necessary?

- Exact approach: gives correct solution
- Approximate approach: gives almost the correct solution, through estimation,

simulation, etc.
- If a problem is too complex to calculate with full completeness, an

approximate approach might be more useful!

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Heuiristic search

- Simulation

- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Heuiristic search

- Simulation

- Divide and conquer

Are these algorithm types exact or approximate?

Brute force (generate and test)

Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite
to guarantee completion. E.g. linear search

Heuristic search
Simulation
Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite
to guarantee completion. E.g. linear search
- Heuristic search
- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution

would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!

- Simulation
- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite
to guarantee completion. E.g. linear search
- Heuristic search
- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution
would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!
- Simulation
- Approximate. Finds a solution by generating lots of data to predict an overall trend. E.g.
simulate play of a game to find out if it's worth playing

- Divide and conquer

Are these algorithm types exact or approximate?

- Brute force (generate and test)
- Exact. Finds every possible answer and tests it. Requires set of possible answers to be finite
to guarantee completion. E.g. linear search
- Heuristic search
- Approximate. E.g. finding the shortest path to a destination. Finding the definitive solution
would require processing many possibilities - we can find an approximate search very quickly.
(Ranks alternatives to prioritise possible paths to look at first) May find the exact solution!
- Simulation
- Approximate. Finds a solution by generating lots of data to predict an overall trend. E.g.
simulate play of a game to find out if it's worth playing
- Divide and conquer
- Exact. Divides problem into sub-problems which can be more easily solved. E.g. binary search

Search the following sorted lists for the number 8, using (a) Linear search (Brute-Force approach) and
(b) Binary search (Divide and Conquer approach)

Think about the best, worst and average case scenarios of these algorithms. For example, can the best case
scenario of a Brute-Force algorithm be faster than running the same task with a more clever algorithm?

@|1(2|4|5|8|9|10|12 (15|19 |21 |23 |25
b) | 8|9 (11|15 |16 |17 |22 |24 |27 |28 |29 |32 |33
c)|2|4(5]|]6|7(9|11 1213|1519 |22 |25

Write a recursive function which takes an integer n and calculates the n™ fibonacci number. The 0
fibonacci number is 0, the 1% fibonacci number is 1 and all following fibonacci numbers are defined as
the sum of the preceding two fibonacci numbers. £ib (10) should return 55

Write a recursive function which takes an integer n and calculates the n™ fibonacci number. The 0
fibonacci number is 0, the 1% fibonacci number is 1 and all following fibonacci numbers are defined as
the sum of the preceding two fibonacci numbers. £ib (10) should return 55

def fib(n):
if n ==
return 0
elif n ==
return 1
else:
return fib(n - 1) + fib(n - 2)

Write a Brute-Force algorithm to solve the following problem:

The length of a ship is an integer. The captain has sons and daughters. His age is greater than the number
of his children, but less than 100. How old is the captain, how many children does he have and what is
the length of the ship if the product of these numbers is 321187

Write a Brute-Force algorithm to solve the following problem:

The length of a ship is an integer. The captain has sons and daughters. His age is greater than the number
of his children, but less than 100. How old is the captain, how many children does he have and what is
the length of the ship if the product of these numbers is 321187

Conditions:

(1) length == int (length) (length of ship is an integer)

(2) children >= 4 (has multiple sons and daughters)

(3) children < age < 100 (age greater than num children, less than 100)
(4) length » children * age = 32118 (product is 32118)

Iterates through all possibilities, checks conditions and returns result
for children in range(4, 99): # From (2)
for age in range(children + 1, 100): # From (3)
length = 32118 / (children » age) # From (4)
if length == int (length): # From (1)
print ("Found_answer")
print ("Children:", children)
print ("Age:", age)
print ("Length", length)
break # No need to continue checking once found

