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- Do you use debugging strategies or do you find yourself getting stressed?
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What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions
- The program stops running
- AttributeError, IndexError, KeyError, NameError, TypeError, ValueError, FileNotFoundError, 

ZeroDivisionError
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- If an exception occurs in the “try” block, the “except” block is run to handle the 
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- There can be multiple except statements after a single try
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What is an iterator? What are some helpful methods from 
the itertools library?

- An iterator keeps track of the traversal of a container
- e.g. loops use iterators to keep track of iteration through a list

- next(<iterator>) 
- Progress to the next item in the iterator
- Raises a StopIteration exception if the end is reached

- Unlike containers (lists, sets, …), iterators can be infinite in length
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- cycle - iterator to cycle through the items in a container, in a loop
- product - combine two containers into one tuple, with each item in one 

container combined with each item in the other
- combinations - a sequence of every possible combination of elements in a 

container
- permutations - like combinations, but including different orderings
- groupby - group elements of a container together in particular categories
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