Week 10

COMP10001

Let's chat: how can you improve your coding skills
between project 1 and project 27?

Let's chat: how can you improve your coding skills
between project 1 and project 27?

Commenting
Do your comments make your code more human-readable?

Style
Approach
Debugging

Let's chat: how can you improve your coding skills
between project 1 and project 27?

Commenting

Do your comments make your code more human-readable?
Do your docstrings describe function inputs, outputs and purpose?

Style
Approach
Debugging

Let's chat: how can you improve your coding skills
between project 1 and project 27?

Commenting

Do your comments make your code more human-readable?
Do your docstrings describe function inputs, outputs and purpose?

Style

Are your variable names descriptive?
Do you use global constants to avoid magic numbers?
Does your code comply with PEP8? Use the filter!

Approach
Debugging

Let's chat: how can you improve your coding skills
between project 1 and project 27?

- Commenting

- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?
- Style
- Are your variable names descriptive?
- Do you use global constants to avoid magic numbers?
- Does your code comply with PEP87? Use the filter!
- Approach
- Have you use helper functions? (Not nested) Good helper functions improve readability, help
with debugging and make your code more reusable!

- Debugging

Let's chat: how can you improve your coding skills
between project 1 and project 27?

- Commenting

- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?

- Style
- Are your variable names descriptive?
- Do you use global constants to avoid magic numbers?
- Does your code comply with PEP87? Use the filter!
- Approach
- Have you used helper functions? (Not nested) Good helper functions improve readability, help
with debugging and make your code more reusable!
- Debugging

- Do you use debugging strategies or do you find yourself getting stressed?

What is an “exception”?

What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions

What is an “exception”?

- Exception ~ run-time error

- An event that disrupts the normal flow of the program’s instructions
- The program stops running

What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions
- The program stops running
- AttributeError, IndexError, KeyError, NameError, TypeError, ValueError, FileNotFoundError,
ZeroDivisionError

How can we use try, except and final to handle exceptions?

How can we use try, except and final to handle exceptions?

Ery:
code block where an exception might occur

except ExceptionType:
code block to handle the exception

finally:
code block that will always execute, regardless of

whether an exception was raised or not

How can we use try, except and final to handle exceptions?

try:
code block where an exception might occur

except ExceptionType:
code block to handle the exception

finally:
code block that will always execute, regardless of

whether an exception was raised or not

If an exception occurs in the “try” block, the “except” block is run to handle the

exception
There can be multiple except statements after a single try

Write a function second_line(filename) that asks the user for the name of a file and
then return the second line of the file. Use a try-except block to catch the file not
found error and print the error message "Oh no, file not found". If exception is
raised, return "ERROR" after printing the error message.

Write a function second_line(filename) that asks the user for the name of a file and
then return the second line of the file. Use a try-except block to catch the file not
found error and print the error message "Oh no, file not found". If exception is
raised, return "ERROR" after printing the error message.

ERROR MESSAGE = "Oh_no, file_not_found"

def second_line(filename) :
try:
with open(filename, 'r') as file:
file.readline ()
return file.readline()
except FileNotFoundError:
print (ERROR_MESSAGE)
return "ERROR"

What is an iterator? What are some helpful methods from
the itertools library?

What is an iterator? What are some helpful methods from
the itertools library?

- An iterator keeps track of the traversal of a container

What is an iterator? What are some helpful methods from
the itertools library?

- An iterator keeps track of the traversal of a container
e.g. loops use iterators to keep track of iteration through a list

What is an iterator? What are some helpful methods from
the itertools library?

- An iterator keeps track of the traversal of a container
e.g. loops use iterators to keep track of iteration through a list
- next(<iterator>)

Progress to the next item in the iterator
Raises a Stoplteration exception if the end is reached

What is an iterator? What are some helpful methods from
the itertools library?

- An iterator keeps track of the traversal of a container
e.g. loops use iterators to keep track of iteration through a list
- next(<iterator>)

Progress to the next item in the iterator
Raises a Stoplteration exception if the end is reached

- Unlike containers (lists, sets, ...), iterators can be infinite in length

The itertools library!

The itertools library!

- cycle - iterator to cycle through the items in a container, in a loop

- product - combine two containers into one tuple, with each item in one
container combined with each item in the other

- combinations - a sequence of every possible combination of elements in a
container

- permutations - like combinations, but including different orderings

- groupby - group elements of a container together in particular categories

What output does the following code print?

import itertools
beatboxer = itertools.cycle(['boots', 'and', 'cats', 'and'])

for count in range (39):
print (next (beatboxer))

What output does the following code print?

import itertools

names = ['Amy', 'Alex', 'Bob']
animals = ['Cat', 'Dog']

print (list (itertools.product (names, animals)))
print (list (itertools.combinations (names, 2)))
print (list (itertools.permutations (names, 2)))

What output does the following code print?

import itertools

words = ['Cracker', 'Apple', 'Echidna', 'Egg', 'Aha', 'EmotionalDamage']

def first_char (word) :
return word[0]

words_group = itertools.groupby(sorted(words), first_char)
for key, group in words_group:
print (key, list (group))

What output does the following code print?

import itertools
words = ['Cracker', 'Apple', 'Echidna', 'Egg', 'Aha', 'EmotionalDamage']

def first_char (word) :
return word[0]

words_group = itertools.groupby(sorted(words), first_char)
for key, group in words_group:
print (key, list (group))

If we don’t sort the woxrds list before doing groupby, then the output is

A ["Aha’, ’'Apple’] C [’Cracker’]

C [’'Cracker’] A [’'Apple’]

E [’Echidna’, ’'Egg’, ’'EmotionalDamage’] E [’Echidna’, ’'Egg’]
A [’Aha’]
E [’EmotionalDamage’]

Write a function which takes two strings as input and uses an i tertools iterator to find whether the first
word is an anagram of the second word. This might not be a very efficient way to find an anagram but it
will help us work with iterators! anagram('astronomer', 'moonstarer') shouldreturn True

Write a function which takes two strings as input and uses an i tertools iterator to find whether the first
word is an anagram of the second word. This might not be a very efficient way to find an anagram but it
will help us work with iterators! anagram('astronomer', 'moonstarer') shouldreturn True

from itertools import permutations

def anagram(wordl, wordZ2):
for ordering in permutations (wordl, len(wordl)):
if "".join(ordering) == word2:
return True
return False

Revision!

Write a function which takes a lowercase string as input and prints the frequency of each vowel in the
string using a dictionary. vowel_counts ('i_love_python') should print:

i1l

el

o 2

Revision!

Write a function which takes two lists of integers and returns the average of the numbers which they both
have in common. in_common_average([1, 2, 3, 4, 5], [0, 2, 4, 6]) shouldreturn 3.0

