
Week 10
COMP10001



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?

- Commenting
- Do your comments make your code more human-readable?

- Style
- Approach
- Debugging



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?

- Commenting
- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?

- Style
- Approach
- Debugging



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?

- Commenting
- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?

- Style
- Are your variable names descriptive?
- Do you use global constants to avoid magic numbers?
- Does your code comply with PEP8? Use the filter!

- Approach
- Debugging



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?

- Commenting
- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?

- Style
- Are your variable names descriptive?
- Do you use global constants to avoid magic numbers?
- Does your code comply with PEP8? Use the filter!

- Approach
- Have you use helper functions? (Not nested) Good helper functions improve readability, help 

with debugging and make your code more reusable!
- Debugging



Let’s chat: how can you improve your coding skills 
between project 1 and project 2?

- Commenting
- Do your comments make your code more human-readable?
- Do your docstrings describe function inputs, outputs and purpose?

- Style
- Are your variable names descriptive?
- Do you use global constants to avoid magic numbers?
- Does your code comply with PEP8? Use the filter!

- Approach
- Have you used helper functions? (Not nested) Good helper functions improve readability, help 

with debugging and make your code more reusable!
- Debugging

- Do you use debugging strategies or do you find yourself getting stressed?



What is an “exception”?



What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions



What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions
- The program stops running



What is an “exception”?

- Exception ~ run-time error
- An event that disrupts the normal flow of the program’s instructions
- The program stops running
- AttributeError, IndexError, KeyError, NameError, TypeError, ValueError, FileNotFoundError, 

ZeroDivisionError



How can we use try, except and final to handle exceptions?



How can we use try, except and final to handle exceptions?



How can we use try, except and final to handle exceptions?

- If an exception occurs in the “try” block, the “except” block is run to handle the 
exception

- There can be multiple except statements after a single try



Write a function second_line(filename) that asks the user for the name of a file and 
then return the second line of the file. Use a try-except block to catch the file not 
found error and print the error message "Oh no, file not found". If exception is 
raised, return "ERROR" after printing the error message.



Write a function second_line(filename) that asks the user for the name of a file and 
then return the second line of the file. Use a try-except block to catch the file not 
found error and print the error message "Oh no, file not found". If exception is 
raised, return "ERROR" after printing the error message.



What is an iterator? What are some helpful methods from 
the itertools library?



What is an iterator? What are some helpful methods from 
the itertools library?

- An iterator keeps track of the traversal of a container



What is an iterator? What are some helpful methods from 
the itertools library?

- An iterator keeps track of the traversal of a container
- e.g. loops use iterators to keep track of iteration through a list



What is an iterator? What are some helpful methods from 
the itertools library?

- An iterator keeps track of the traversal of a container
- e.g. loops use iterators to keep track of iteration through a list

- next(<iterator>) 
- Progress to the next item in the iterator
- Raises a StopIteration exception if the end is reached



What is an iterator? What are some helpful methods from 
the itertools library?

- An iterator keeps track of the traversal of a container
- e.g. loops use iterators to keep track of iteration through a list

- next(<iterator>) 
- Progress to the next item in the iterator
- Raises a StopIteration exception if the end is reached

- Unlike containers (lists, sets, …), iterators can be infinite in length



The itertools library!



The itertools library!

- cycle - iterator to cycle through the items in a container, in a loop
- product - combine two containers into one tuple, with each item in one 

container combined with each item in the other
- combinations - a sequence of every possible combination of elements in a 

container
- permutations - like combinations, but including different orderings
- groupby - group elements of a container together in particular categories



What output does the following code print?



What output does the following code print?



What output does the following code print?



What output does the following code print?







Revision!



Revision!


